

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

sppIDer

sppIDer is a pipeline for looking at genome composition in hybrid genomes and checking for chromosomal copy variants in single species strains.

sppIDer.py is the main wrapper that calls established bioinformatic tools and custom scripts. This pipeline needs a combination reference genome and one or more short read (fastq) files.

The sppIDer docker image is a self-contained platform capable of executing its pipeline without requiring cumbersome managment and installation of prerequisite tools.

Changes to this source repo are automatically built into an updated docker image, available from docker hub at glbrc/sppider [https://hub.docker.com/r/glbrc/sppider/].

Additional detailed usage information is available in the sppIDer manual.

Getting Started

pipeline help/syntax:

docker run --rm -it glbrc/sppider [pipeline_script] --help

 pipeline scripts:
 sppIDer.py
 mitoSppIDer.py
 combineRefGenomes.py

example: sppIDer.py help

docker run --rm -it glbrc/sppider sppIDer.py -h

 usage: sppIDer.py [-h] --out OUT --ref REF --r1 R1 [--r2 R2] [--byBP]
 [--byGroup]

 Run full sppIDer

 optional arguments:
 -h, --help show this help message and exit
 --out OUT Output prefix, required
 --ref REF Reference Genome, required
 --r1 R1 Read1, required
 --r2 R2 Read2, optional
 --byBP Calculate coverage by basepair, optional, DEFAULT, can't be used
 with -byGroup
 --byGroup Calculate coverage by chunks of same coverage, optional, can't
 be used with -byBP

Pipeline Usage

Workflow:

	The combination reference genome must be built first using combineRefGenomes.py. The outputs can be used many times with sppIDer.py with different data sets.

	The main pipeline, sppIDer.py, takes fastq input(s) and maps the reads to the combined reference genome made with combineRefGenomes.py.

	The pipeline then uses bioinfromatic tools and custom scripts to pares this output for where, how well, and how deeply the reads map to combined reference genome by species, chromosomes, and windows.

	The output is several pdfs with plots of precentage and quality of reads mapped and plots for coverage by species and in windows. Addionally several summary text files are created.

	All files are kept from intermediate steps and could be used in other anlyses.

Notes:

	Execute the container with a host volume mount, as shown below, to retrieve pipeline output files into the host machine's current working directory

	Providing the example "--user" switch will write to output files using permissions of the host user

	All input fastqs and reference files must be in the same directory. The output will be written to the working directory

	The largest test dataset is 587.8Mb and took ~22 minutes to run with 4 cores and 8GB

example: executing a combineRefGenome.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineRefGenomes.py
 --out REF.fasta \
 --key KEY.txt

An optional --trim can be used to trim short uninformative contigs for reference genomes with many short contigs. All contigs shorter than the supplied interger will be ignored.
The KEY.txt file must be tab delimited and the reference genome unique name cannot contain hyphens. See example.

example: executing a sppIDer.py pipeline

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 sppIDer.py \
 --out OUT \
 --ref REF.fasta \
 --r1 R1.fastq \
 --r2 R2.fastq

An optional --byGroup flag can be used for very large combination genomes. This produce a bedfile that doesn't have coverage information for each basepair but by groups. Which speeds up the run.

For mitoSppIDer

example: executing combineGFF.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineGFF.py
 --out REF.gff \
 --key GFF_KEY.txt

example: executing a mitoSppIDer.py pipeline

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 mitoSppIDer.py \
 --out OUT \
 --ref MITO_REF.fasta \
 --r1 R1.fastq \
 --r2 R2.fastq

An optional --gff can be used if you are providing a combined gff of the regions that should be marked on the final plots.

System Requirements

This pipeline has been tested on a CentOS 7.4 (1708) host running Docker Community Edition (CE) Stable [https://docs.docker.com/engine/installation/] (17.12.0-ce).

sppIDer Manual

See README for less detailed explanation.See example datasets for data to test with and the end of manual for usage of these examples.See workflow for a cartoon flowchart of the steps involved.

Note: The needed inputs must be in the directory you run the docker from. All outputs will also be saved here.
The largest test dataset (SRR1119201) is 587.8Mb and took ~22 minutes to run with 4 cores and 8GB.

combineRefGenomes.py

This script requires all the reference genomes to be in one location with a key between the file names and what the reference genome should be named in the combined genome. Additionally, a desired output name for the reference fasta is required and the optional trim threshold is allowed. The order the genomes are concatenated follow the order in the key file, the order of the chromosome/scaffolds/contigs will remain as they are in the given reference file, but will be renamed by the name in the key file and numbered sequentially. The key should be a text file with a list of the “desired reference name” and the actual reference fasta separated by a tab. The “desired reference name” cannot include any hyphens (-) an example is given as “SaccharomycesRefKey.txt”. The output will be a concatenated reference with the “desired reference name” and chromosome number (as an Arabic numeral) separated by a hyphen. This format is necessary for the plotting scripts which parse the chromosome names. There is an optional –trim flag so that any contigs shorter than the given interger are not included. For genomes with many short uninformative contigs this reduces the memory usage and speeds things up. Two steps in sppIDer require index files for the genome used, thus this custom script will also make these required files.

Inputs:

	Tab separated text file key to reference genomes to combine.

	Each of those reference genomes as fastas, e.g.:S288c.fastaGCA_002079055.1.fasta

Example: executing a combineRefGenome.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineRefGenomes.py
 --out REF.fasta \
 --key KEY.txt

An optional --trim can be used to trim short uninformative contigs for reference genomes with many short contigs. All contigs shorter than the supplied interger will be ignored.
The KEY.txt file must be tab delimited and the reference genome unique name cannot contain hyphens. See example.

Outputs:

For downstream use:

	REF.fasta

	REF.fasta.bwt

	REF.fasta.pac

	REF.fasta.ann

	REF.fasta.amb

	REF.fasta.sa

	REF.fasta.fai

For humans:

	comboLength_REF.fasta.txt - text file with summary of the length of each chromosome, species reference, and total combination genome.

sppIDer.py

This script requires the combination reference genome made with combineGenomes.py and fastq formatted short-read sequence files for the test of interest. Additionally, you can choose to run it so that depth is analyzed by basepair (-byBP) or grouped by coverage (-byGroup). This script will create a file (output_sppIDerRun.info) that will print all the argument choice and the time to run each step. Additionally, all the normal standard outputs for each step will be printed to screen along with the time to run each step.This script will then run bwa –mem to map the reads to the combination reference genome and outputs a sam file. This same file is then passed to a custom python script (parseSamFile.py) to parse the data by which genome the reads map to and the mapping quality (MQ) the output of this is passed a Rscript (MQscores_sumPlot.R) that will plot the percentage of reads that map to each genome and unmapped reads, the same plot without the unmapped bar, for those datasets where most the reads don’t map, and a violin plot showing the distribution of mapping qualities for each genome.The sam output will also be used for samtools view which will only retain MQ >3 and then samtools sort that will order the reads to match the reference order. Next bedtools genomeCoverageBed is called to determine depth of coverage either by basepair (-d) or grouped by coverage (-bga). The –d option give is more accurate but takes longer for large genomes there for the –byGroup option is appropriate for larger genomes. This output is parsed by meanDepth_sppIDer(-d or –bga).R. These scripts average depth by species, chromosome, and in 10,000 windows and prints these out to text files. The two scripts do the same thing but depend on the input from bedtools. Average depth by species is plotted by sppIDer_depthPlot_forSpc.R. The windowed average depth is plotted by sppIDer_depthPlot(-d or –bga).R

Inputs:

	Combined reference genome produced by combineRefGenomes.py

	fastq(s) of interest to test

Example: executing sppIDer.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 sppIDer.py \
 --out OUT \
 --ref REF.fasta \
 --r1 R1.fastq \
 --r2 R2.fastq

An optional --byGroup flag can be used for very large combination genomes. This produce a bedfile that doesn't have coverage information for each basepair but by groups. Which speeds up the run.

Steps and Outputs:

	output_sppIDerRun.info – human readable file tracking the time of each step.

bwa mem

	Inputs: reference genome, fastq sequence files

	Output: output.sam - Human readable output of where reads map to reference

parseSamFile.py

	Inputs: output.sam

	Outputs: output_MQ.txt - Text file of read counts by Species and Mapping Quality score

MQscores_sumPlot.R

	Inputs: output_MQ.txt

	Outputs:

	output_MQsummary.txt - Text file with summary of how many and how well reads map to each genome

	output_plotMQ.pdf - Plot of reads mapped per genome and Mapping Quality per genome

samtools view

	Inputs: output.sam

	Outputs: output.view.bam - Binary file of just reads with mapping quality >3

samtools sort

	Inputs: output.sam

	Oputputs: output.sort.bam - Binary file of reads ordered by reference genome

bedtools genomeCoverageBed

	Inputs: output.sort.bam

	Outputs: output-(d/g).bedgraph - Coverage of reference genome, per base pair position (d) or grouped by coverage (g)

meanDepth_sppIDer(-d/-bga).R

	Inputs: output-(d/g).bedgraph

	Outputs:

	output_speciesAvgDepth-(d/g).txt - Text file summary of coverage for each species including: mean, relativeMean (speciesMean/globalMean), max, and median coverage

	output_chrAvgDepth-(d/g).txt - Text file summary of coverage for each chromosome of each species

	output_winAvgDepth-(d/g).txt - Text file summary of coverage of the genome split into 10,000 windows

sppIDer_depthPlot_forSpc.R

	Inputs: output_speciesAvgDepth-(d/g).txt

	Outputs: output_speciesDepth.pdf - Plot of coverage by species

sppIDer_depthPlot-d.R

	Inputs: output_winAvgDepth-(d/g).txt

	Outputs: output_sppIDerDepthPlot-(d/g).pdf - Plot of coverage by genome split into 10,000 windows

mitoSppIDer

For mitoSppIDer the combineRefGenomes.py scripts again must be run just for mitochondrial genomes desired. Additionally, regions of interested, e.g. coding regions, can be highlighted on the final output if the combineGFF.py script is also run.

combineGFF.py

This script combines gff style files that include information of the regions desired to be highlighted on the final plot. See examples. The key should be a text file with a list of the “desired reference gff name” and the actual reference gff separated by a tab.

Inputs:

	Tab separated text file key to reference genomes to combine.

	Each of those reference genome gffs, e.g.:S288c.gffGCA_002079055.1.gff

Example: executing a combineRefGenome.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineGFF.py
 --out REF.gff \
 --key GFF_KEY.txt

Outputs:

combinedRef.gff - a tab delimited text file that specifies the species, start, end, midpoint, and geneName for each intron to be delineated in the final plots.

mitoSppIDer.py

This pipeline is very similar to the main sppIDer.py only the input reference genomes only contains mitochondrial (mito) or other small genomes. Because of the size of most mito genomes the by-base-pair is the default. The final plots will be stacked plots of each supplied mito genome and if a combined gff is supplied then those regions will be labeled and shaded on the final plot.

Inputs:

	Combined reference genome of just mitochondrial genomes made with combineRefGenome.py

	Combined gff style file for adding emphasis in plots, if desired.

	fastq(s) of interest to test

Example: executing a mitoSppIDer.py pipeline

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 mitoSppIDer.py \
 --out OUT \
 --ref MITO_REF.fasta \
 --r1 R1.fastq \
 --r2 R2.fastq

An optional --gff can be used if you are providing a combined gff of the regions that should be marked on the final plots.

Steps and Outputs:

	output_mitoSppIDerRun.info – human readable file tracking the time of each step.

bwa mem

	Inputs: mito reference genome, fastq sequence files, gff

	Output: output.sam - Human readable output of where reads map to reference

parseSamFile.py

	Inputs: output.sam

	Outputs: output_MQ.txt - Text file of read counts by Species and Mapping Quality score

MQscores_sumPlot.R

	Inputs: output_MQ.txt

	Outputs:

	output_MQsummary.txt - Text file with summary of how many and how well reads map to each genome

	output_plotMQ.pdf - Plot of reads mapped per genome and Mapping Quality per genome

samtools view

	Inputs: output.sam

	Outputs: output.view.bam - Binary file of just reads with mapping quality >3

samtools sort

	Inputs: output.sam

	Oputputs: output.sort.bam - Binary file of reads ordered by reference genome

bedtools genomeCoverageBed

	Inputs: output.sort.bam

	Outputs: output-d.bedgraph - Coverage of reference genome, per base pair position (d)

meanDepth_sppIDer-d.R

	Inputs: output-d.bedgraph

	Outputs:

	output_speciesAvgDepth-d.txt - Text file summary of coverage for each species including: mean, relativeMean (speciesMean/globalMean), max, and median coverage

	output_chrAvgDepth-d.txt - Text file summary of coverage for each chromosome of each species

	output_winAvgDepth-d.txt - Text file summary of coverage of the genome split into 10,000 windows

mitoSppIDer_depthPlot-d.R

	Inputs:

	output_winAvgDepth-d.txt

	combine.gff

	Outputs: output_sppIDerDepthPlot-d.pdf - Plot of coverage by mito-genome split into 10,000 windows

Examples:

Below are examples for the stand alone scripts the data or example outputs can be found in examples

combineRefGenomes.py

For a working Saccharomyces combined reference genome locations can be found in example_information.md.

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineRefGenomes.py
 --out SaccharomycesCombo.fasta \
 --key SaccharomycesGenomesKey.txt

The output from this can be used as the reference input for sppIDer.pyAll files must be kept together in the same directory to be usable.

sppIDer.py

Info on where example short read data can be found can be found in example_information.md.

Pure strain isolated from North Carolina

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 sppIDer.py \
 --out SRR2586160 \
 --ref SaccharomycesCombo.fasta \
 --r1 SRR2586160_1.fastq \
 --r2 SRR2586160_2.fastq

For this strain reads map predominantly to the Saccharomyces eubayanus reference. Examples of the plot outputs and example text file outputs can be found in exampleOutputs.~18 minutes to run with 4 cores and 8GB

Lager brewing strain, two way hybrid

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 sppIDer.py \
 --out SRR2586169 \
 --ref SaccharomycesCombo.fasta \
 --r1 SRR2586169_1.fastq \
 --r2 SRR2586169_2.fastq

For this strain reads map to both Saccharomyces cerevisiae and Saccharomyces eubayanus references, which is expected of a Lager strain. Examples of the plot outputs and example text file outputs can be found in exampleOutputs.~17 minutes to run with 4 cores and 8GB

Multiway hybrid

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 sppIDer.py \
 --out SRR1119201 \
 --ref SaccharomycesCombo.fasta \
 --r1 SRR1119201_1.fastq \
 --r2 SRR1119201_2.fastq

For this cider strain reads map to Saccharomyces cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces uvarum with minor contributions from Saccharomyces eubayanus. Examples of the plot outputs and example text file outputs can be found in exampleOutputs.~22 minutes to run with 4 cores and 8GB.

mitoSppIDer scripts

Information about all files to make the combination reference fasta and gff can be found can be found in example_information.md.

combineGFF.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineGFF.py
 --out SaccharomycesMitoCombo.gff \
 --key mitoGFFKey.txt

combineRefGenomes.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 combineRefGenomes.py
 --out SaccharomycesMitoCombo.fasta \
 --key mitoRefKey.txt

mitoSppIDer.py

docker run \
--rm -it \
--mount type=bind,src=$(pwd),target=/tmp/sppIDer/working \
--user "$UID:$(id -g $USERNAME)" \
glbrc/sppider \
 mitoSppIDer.py \
 --out SRR2586169mito \
 --ref SaccharomycesMitoCombo.fasta \
 --gff SaccharomycesMitoCombo.gff \
 --r1 SRR2586169_1.fastq \
 --r2 SRR2586169_2.fastq

Example Information for sppIDer

The genus Saccharomyces can be used as a simple test case. Below describes the files needed and where to find them.The end of the sppIDer manual had how to run the sppIDer pipeline with these examples.

Example for making a combination reference genome

This step requires all the reference genomes of interested and a tab seperated file that keys the names of the fastas to a unique identifier. Here is an example that can be used for Saccharomyces.Below is a list of Saccharomcyes reference genomes and where to find them.

Reference Genomes:

File Name | Species | Source | Publication

	Scer.fasta | Saccharomyces cerevisiae | Saccharomyces Sensu Stricto [http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Assemblies&version=current] | SGD [https://www.yeastgenome.org/]

	Spar.fasta | Saccharomyces paradoxus | Saccharomyces Sensu Stricto [http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Assemblies&version=current] | Liti and Carter et al. 2009 Nature

	Smik.fasta | Saccharomyces mikatae | Saccharomyces Sensu Stricto [http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Assemblies&version=current] | Scannell and Zill et al. 2011 G3

	SkudZP.fasta | Saccharomyces kudriavzeii | Saccharomyces Sensu Stricto [http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Assemblies&version=current] | Scannell and Zill et al. 2011 G3

	Sarb.fasta | Saccharomyces arboricola | NCBI [https://www.ncbi.nlm.nih.gov/assembly/GCA_000292725.1] | Liti et al. 2013 BMC Genomics

	Suva.fasta | Saccharomyces uvarum | Saccharomyces Sensu Stricto [http://www.saccharomycessensustricto.org/cgi-bin/s3.cgi?data=Assemblies&version=current] | Scannell and Zill et al. 2011 G3

	Seub_wMito.fasta | Saccharomyces eubayanus | NCBI [https://www.ncbi.nlm.nih.gov/assembly/GCA_001298625.1] | Baker et al. 2015 MBE

The published S. uvarum genome (Scannell and Zill et al 2011) had chromosome X swapped with chromosome XII.

References:

Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D, Hittinger CT. 2015. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol. Biol. Evol. 32:2818–2831.Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, et al. 2009. Population genomics of domestic and wild yeasts. Nature 458:337–341.Liti G, Nguyen Ba AN, Blythe M, Müller CA, Bergström A, Cubillos FA, Dafhnis-Calas F, Khoshraftar S, Malla S, Mehta N, et al. 2013. High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. BMC Genomics 14:1-14.Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger CT. 2011. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus. G3 1:11–25.

Example test data

Below is a list of short read data that can be used as a test. It includes one pure strain, one two-way hybrid, and one more complex hybrid.
SRA | Species | Strain | Publication

	SRR2586160 [https://www.ncbi.nlm.nih.gov/sra/SRR2586160/] | Saccharomyces eubayanus | yHRVM108 | Peris and Langdon et al. 2016 PLoS Genet.

	SRR2586169 [https://www.ncbi.nlm.nih.gov/sra/SRR2586169/] | Saccharomyces cerevisiae X S. eubayanus | Weihenstephan 34/70 (syn. yHAB47) | Peris and Langdon et al. 2016 PLoS Genet.

	SRR1119201 [https://www.ncbi.nlm.nih.gov/sra/SRR1119201/] | Saccharomyces cerevisiae X S. kudriavzevii X S. uvarum X S. eubayanus | CBS2834 | Almeida et al. 2014 Nature communications

References:

Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarède I, Albertin W, Durrens P, Sherman DJ, Marullo P, et al. 2014. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat. Commun. 5:4044.Peris D, Langdon QK, Moriarty R V, Sylvester K, Bontrager M, Charron G, Leducq J, Landry CR, Libkind D, Hittinger CT. 2016. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. PLoS Genet. 12: e1006155.

Example outputs

Files in exampleOutputs. Each set of input fastqs have corresponding output files.File Suffix | Description

	SRR*_sppIDerRun.info | A text file that contains the options and inputs for that run and the time to run.

	SRR*_MQsummary.txt | Text file with summary of how many and how well reads map to each genome.

	SRR*_plotMQ.pdf | Plot of reads mapped per genome and Mapping Quality per genome.

	SRR*_speciesAvgDepth-d.txt | Text file summary of coverage for each species including: mean, relativeMean (speciesMean/globalMean), max, and median coverage.

	SRR*_speciesDepth.pdf | Plot of coverage by species.

	SRR*_sppIDerDepthPlot-d.pdf | Plot of coverage by genome split into 10,000 windows.

Example mitochondrial inputs

Saccharomyces can also be used to test mitoSppIDer. Two text files are provided as examples of the required user provided keys to make a combined reference genome and gff. Below are links to a mitochondrial genome for each Saccharomyces species.mitoRefKey.txt - Tab separated text file to match mitochondrial (mito) reference genome with desired unique name.mitoGFFKey.txt - Tab separated text file to match mitochondrial (mito) reference GFF with desired unique name.

Species Files:

Species | Reference | GFF | Accession | Publication

	S. cerevisiae | S288c_mtDNA.fasta | S288c_mtDNA.gff | NC_001224 [https://www.ncbi.nlm.nih.gov/nuccore/NC_001224] | Foury et al. 1998 FEBS Lett.

	S. paradoxus | CBS432_mtDNA.fasta | CBS432_mtDNA.gff | NC_018044 [https://www.ncbi.nlm.nih.gov/nuccore/NC_018044] | Prochazka et al. 2012 FEMS Yeast Res.

	S. mikatae | KX707788_mtDNA.fasta | KX707788_mtDNA.gff | KX707788 [https://www.ncbi.nlm.nih.gov/nuccore/KX707788] | NA

	S. kudriavzeii | KX707787-Skud_mtDNA.fasta | KX707787-Skud_mtDNA.gff | KX707787 [https://www.ncbi.nlm.nih.gov/nuccore/KX707787] | NA

	S. arboricola | CBS10644_mtDNA.fasta | CBS10644_mtDNA.gff | KX657740 [https://www.ncbi.nlm.nih.gov/nuccore/KX657740] | Sulo et al 2017

	S. uvarum | CBS395_mtDNA.fasta | CBS395_mtDNA.gff | KX657742 [https://www.ncbi.nlm.nih.gov/nuccore/KX657742] | Sulo et al 2017

	S. eubayanus | FM1318_mtDNA.fasta | FM1318_mtDNA.gff | NW_017264706.1 [https://www.ncbi.nlm.nih.gov/nuccore/NW_017264706.1] | Baker et al. 2015 MBE

Some mitochondrial genes are missing from the published gffs and will have to be annotated by hand if they are desired.

References:

Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D, Hittinger CT. 2015. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol. Biol. Evol. 32:2818–2831.Foury F, Roganti T, Lecrenier N, Purnelle B. 1998. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440:325–331.Procházka E, Franko F, Poláková S, Sulo P. 2012. A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. cerevisiae. FEMS Yeast Res. 12:819–830.Sulo P, Szabóová D, Bielik P, Polákova S, Šoltys K, Jatzová K, Szemes T. 2017. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the 'yeast mitochondrial genetic code'. DNA Res. 24:571-583.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

